Wireless

Distribution of 5G core to network edge

Distributing Core Functions in 5G networks

The evolution of communication technology has brought us to the era of 5G networks, promising faster speeds, lower latency, and the ability to connect billions of devices simultaneously. However, to achieve these ambitious goals, the architecture of 5G networks needs to be more flexible, scalable, and efficient than ever before. With the advent of CUPS, or Control and User Plane Separation, in later LTE releases, the telecommunications industry had high expectations for a prototypical distributed control-user plane architecture. This development was seen as a steppingstone towards the more advanced 5G networks that were on the horizon. CUPS aimed to separate the control plane and user plane functionalities where the Control Plane (specifically the Session Management Function or SMF) is typically centralized while the User Plane Function (UPF) can be located alongside the Control Plane or distributed to other locations in the network as demanded by specific use cases.

Understanding the need for Distributed UPF

The UPF is a key component in 5G networks, responsible for handling user data traffic. Distributed User Plane Function (D-UPF) is an advanced network architecture that distributes the UPF functionality across multiple nodes closer to the user and enables local breakout (LBO) to manage use cases that requires lower latency or more privacy, enabling a more scalable and flexible networking environment. With D-UPF, operators can handle increasing data volumes, reduce latency, and enhance overall network performance. By distributing the UPF, operators can effectively manage the increasing data demands across different consumer and enterprise use cases in a cost-effective manner.

Dell Technologies
Figure 1: Distributed User Plane function in 5G Core Architecture

D-UPF also plays a crucial role in enabling edge computing in 5G networks. By distributing the user plane traffic closer to the network edge, D-UPF reduces the latency associated with data transmission to and from centralized data centers. This opens opportunities for real-time applications, such as autonomous vehicles, augmented reality, and industrial automation, where low latency is critical for their proper functioning.

The editorial staff had no role in this post's creation.